Pattern Recognition with Gaussian Mixture Models of Marginal Distributions

نویسندگان

  • Masako Omachi
  • Shinichiro Omachi
چکیده

Precise estimation of data distribution with a small number of sample patterns is an important and challenging problem in the field of statistical pattern recognition. In this paper, we propose a novel method for estimating multimodal data distribution based on the Gaussian mixture model. In the proposed method, multiple random vectors are generated after classifying the elements of the feature vector into subsets so that there is no correlation between any pair of subsets. The Gaussian mixture model for each subset is then constructed independently. As a result, the constructed model is represented as the product of the Gaussian mixture models of marginal distributions. To make the classification of the elements effective, a graph cut technique is used for rearranging the elements of the feature vectors to gather elements with a high correlation into the same subset. The proposed method is applied to a character recognition problem that requires high-dimensional feature vectors. Experiments with a public handwritten digit database show that the proposed method improves the accuracy of classification. In addition, the effect of classifying the elements of the feature vectors is shown by visualizing the distribution. key words: pattern recognition, Gaussian mixture model, graph cut, small sample size problem, character recognition

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pii: S0031-3203(01)00133-9

We present a novel method for representing “extruded” distributions. An extruded distribution is an M -dimensional manifold in the parameter space of the component distribution. Representations of that manifold are “continuous mixture models”. We present a method for forming one-dimensional continuous Gaussian mixture models of sampled extruded Gaussian distributions via ridges of goodness-of-#...

متن کامل

Recognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model

Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....

متن کامل

The Family of Scale-Mixture of Skew-Normal Distributions and Its Application in Bayesian Nonlinear Regression Models

In previous studies on fitting non-linear regression models with the symmetric structure the normality is usually assumed in the analysis of data. This choice may be inappropriate when the distribution of residual terms is asymmetric. Recently, the family of scale-mixture of skew-normal distributions is the main concern of many researchers. This family includes several skewed and heavy-tailed d...

متن کامل

Active curve axis Gaussian mixture models

Gaussian Mixture Models (GMM) have been broadly applied for the fitting of probability density function. However, due to the intrinsic linearity of GMM, usually many components are needed to appropriately fit the data distribution, when there are curve manifolds in the data cloud. In order to solve this problem and represent data with curve manifolds better, in this paper we propose a new nonli...

متن کامل

On a Mixture Autoregressive Model

The assumption of Gaussian innovation terms in linear time series analysis is quite restrictive. Under this assumption, both the marginal and conditional distributions of the time series are Gaussian. However, in real life many time series display features which seem to violate the Gaussian assumption. For example, Chan and Tong (1998) show that the Canadian lynx data have a bimodal marginal di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEICE Transactions

دوره 94-D  شماره 

صفحات  -

تاریخ انتشار 2011